College

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F)=\frac{5}{9}(F-32)[/tex]. What does [tex]C(F)[/tex] represent?

A. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Celsius when the input [tex]F[/tex] is in degrees Fahrenheit.

B. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Fahrenheit when the input [tex]C[/tex] is in degrees Celsius.

C. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Fahrenheit when the input [tex]F[/tex] is in degrees Celsius.

D. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Celsius when the input [tex]C[/tex] is in degrees Fahrenheit.

Answer :

To solve the question, we need to understand what the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] is supposed to do.

1. Understanding the Function:
- The function [tex]\( C(F) \)[/tex] converts a temperature from degrees Fahrenheit to degrees Celsius.
- In this function, [tex]\( F \)[/tex] represents the temperature in degrees Fahrenheit, which is the input.
- The function processes this input temperature and converts it into degrees Celsius.

2. Analyzing the Output [tex]\( C(F) \)[/tex]:
- The expression [tex]\( \frac{5}{9}(F - 32) \)[/tex] is a well-known formula used for converting Fahrenheit to Celsius.
- Therefore, the output, or the result of the function [tex]\( C(F) \)[/tex], is the temperature in degrees Celsius.

3. Conclusion:
- Based on the function's purpose and the formula used, [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.

Therefore, the correct interpretation of [tex]\( C(F) \)[/tex] is: "C(F) represents the output of the function C in degrees Celsius when the input F is in degrees Fahrenheit."