College

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F)=\frac{5}{9}(F-32)[/tex].

What does [tex]C(F)[/tex] represent?

A. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Celsius when the input [tex]F[/tex] is in degrees Fahrenheit.

B. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Celsius when the input [tex]C[/tex] is in degrees Fahrenheit.

Answer :

To solve the question, let's understand what the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] is used for.

This function is a formula that converts temperatures from degrees Fahrenheit ([tex]\(F\)[/tex]) to degrees Celsius ([tex]\(C\)[/tex]). In this formula:

- [tex]\( F \)[/tex] is the temperature in degrees Fahrenheit that you want to convert.
- [tex]\( C(F) \)[/tex] is the resulting temperature in degrees Celsius after conversion.

The process looks like this:

1. You take the temperature in Fahrenheit ([tex]\(F\)[/tex]).
2. Subtract 32 from this Fahrenheit temperature. This step adjusts for the offset between the Fahrenheit and Celsius scales.
3. Multiply the result by [tex]\(\frac{5}{9}\)[/tex]. This ratio scales the adjusted temperature to the Celsius scale, which is smaller than the Fahrenheit scale.

The question asks what [tex]\( C(F) \)[/tex] represents.

Based on this understanding, [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit. This means [tex]\( C(F) \)[/tex] is the converted temperature in degrees Celsius corresponding to the input temperature in Fahrenheit.