High School

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F)=\frac{5}{9}(F-32)[/tex]. What does [tex]C(F)[/tex] represent?

A. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Celsius when the input [tex]F[/tex] is in degrees Fahrenheit.

B. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Fahrenheit when the input [tex]C[/tex] is in degrees Celsius.

C. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Fahrenheit when the input [tex]F[/tex] is in degrees Celsius.

D. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Celsius when the input [tex]C[/tex] is in degrees Fahrenheit.

Answer :

To solve the problem of converting temperatures from degrees Fahrenheit to degrees Celsius, let's start by understanding what the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] does. This is a formula used to convert temperatures from Fahrenheit to Celsius.

Now, let's identify what [tex]\( C(F) \)[/tex] represents:

1. Understanding the Function: The function [tex]\( C(F) \)[/tex] is specifically designed to take an input [tex]\( F \)[/tex], which represents a temperature in degrees Fahrenheit, and convert it into degrees Celsius.

2. Breaking Down the Formula:
- [tex]\( F \)[/tex] is the temperature in Fahrenheit.
- Subtracting 32 from [tex]\( F \)[/tex] is the initial step to adjust for the difference between the Fahrenheit and Celsius scales.
- Multiplying the result by [tex]\( \frac{5}{9} \)[/tex] scales the adjusted Fahrenheit temperature to its equivalent in Celsius.

3. Conclusion: Thus, [tex]\( C(F) \)[/tex] stands for the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.

Therefore, the correct choice is:

- [tex]$C(F)$[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.