Answer :
To solve the problem of converting temperatures from degrees Fahrenheit to degrees Celsius, let's start by understanding what the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] does. This is a formula used to convert temperatures from Fahrenheit to Celsius.
Now, let's identify what [tex]\( C(F) \)[/tex] represents:
1. Understanding the Function: The function [tex]\( C(F) \)[/tex] is specifically designed to take an input [tex]\( F \)[/tex], which represents a temperature in degrees Fahrenheit, and convert it into degrees Celsius.
2. Breaking Down the Formula:
- [tex]\( F \)[/tex] is the temperature in Fahrenheit.
- Subtracting 32 from [tex]\( F \)[/tex] is the initial step to adjust for the difference between the Fahrenheit and Celsius scales.
- Multiplying the result by [tex]\( \frac{5}{9} \)[/tex] scales the adjusted Fahrenheit temperature to its equivalent in Celsius.
3. Conclusion: Thus, [tex]\( C(F) \)[/tex] stands for the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.
Therefore, the correct choice is:
- [tex]$C(F)$[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.
Now, let's identify what [tex]\( C(F) \)[/tex] represents:
1. Understanding the Function: The function [tex]\( C(F) \)[/tex] is specifically designed to take an input [tex]\( F \)[/tex], which represents a temperature in degrees Fahrenheit, and convert it into degrees Celsius.
2. Breaking Down the Formula:
- [tex]\( F \)[/tex] is the temperature in Fahrenheit.
- Subtracting 32 from [tex]\( F \)[/tex] is the initial step to adjust for the difference between the Fahrenheit and Celsius scales.
- Multiplying the result by [tex]\( \frac{5}{9} \)[/tex] scales the adjusted Fahrenheit temperature to its equivalent in Celsius.
3. Conclusion: Thus, [tex]\( C(F) \)[/tex] stands for the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.
Therefore, the correct choice is:
- [tex]$C(F)$[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.