Answer :
To understand what [tex]$C(F)$[/tex] represents, let's break down the function it uses:
The function given is [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex].
- Function Name and Input:
- The function is named [tex]\( C \)[/tex] and it takes one input variable, [tex]\( F \)[/tex], which stands for the temperature in degrees Fahrenheit.
- Function Operation:
- The function [tex]\( C \)[/tex] is performing a conversion operation on the input [tex]\( F \)[/tex].
- Specifically, it subtracts 32 from the Fahrenheit temperature. This step adjusts Fahrenheit temperatures relative to the Fahrenheit freezing point of water.
- Then, it scales the result by [tex]\(\frac{5}{9}\)[/tex], which is the conversion factor from Fahrenheit to Celsius. This factor adjusts for the different sizes of the Celsius and Fahrenheit degrees.
- Output of the Function:
- The result of the function [tex]\( C(F) \)[/tex] is the temperature expressed in degrees Celsius.
Based on this understanding, [tex]\( C(F) \)[/tex] is the outcome of converting a temperature from Fahrenheit to Celsius using the given formula. Thus:
- [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.
So, the correct choice is indeed the first one:
[tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.
The function given is [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex].
- Function Name and Input:
- The function is named [tex]\( C \)[/tex] and it takes one input variable, [tex]\( F \)[/tex], which stands for the temperature in degrees Fahrenheit.
- Function Operation:
- The function [tex]\( C \)[/tex] is performing a conversion operation on the input [tex]\( F \)[/tex].
- Specifically, it subtracts 32 from the Fahrenheit temperature. This step adjusts Fahrenheit temperatures relative to the Fahrenheit freezing point of water.
- Then, it scales the result by [tex]\(\frac{5}{9}\)[/tex], which is the conversion factor from Fahrenheit to Celsius. This factor adjusts for the different sizes of the Celsius and Fahrenheit degrees.
- Output of the Function:
- The result of the function [tex]\( C(F) \)[/tex] is the temperature expressed in degrees Celsius.
Based on this understanding, [tex]\( C(F) \)[/tex] is the outcome of converting a temperature from Fahrenheit to Celsius using the given formula. Thus:
- [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.
So, the correct choice is indeed the first one:
[tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.