College

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]$C(F)=\frac{5}{9}(F-32)$[/tex]. What does [tex]$C(F)$[/tex] represent?

A. [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.

B. [tex]$C(F)$[/tex] represents the output of the function [tex]$F$[/tex] in degrees Fahrenheit when the input [tex]$C$[/tex] is in degrees Celsius.

C. [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Fahrenheit when the input [tex]$F$[/tex] is in degrees Celsius.

D. [tex]$C(F)$[/tex] represents the output of the function [tex]$F$[/tex] in degrees Celsius when the input [tex]$C$[/tex] is in degrees Fahrenheit.

Answer :

To solve this problem, we need to understand what the function [tex]\( C(F) = \frac{5}{9}(F-32) \)[/tex] represents. This function is used to convert temperatures from degrees Fahrenheit to degrees Celsius.

Let's break down the problem:

1. Function Explanation:
- The function [tex]\( C(F) \)[/tex] takes an input [tex]\( F \)[/tex], which is the temperature in degrees Fahrenheit.
- It then applies the formula [tex]\( \frac{5}{9}(F-32) \)[/tex] to convert this temperature.
- The result, [tex]\( C(F) \)[/tex], is the temperature in degrees Celsius.

2. Identify the Correct Interpretation:
- We need to determine what [tex]\( C(F) \)[/tex] actually represents in terms of inputs and outputs.
- Since [tex]\( F \)[/tex] is the temperature in Fahrenheit we start with, and after applying the function we get [tex]\( C(F) \)[/tex], which is the converted temperature in Celsius.

Given these points:

- [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.

So, the correct answer is:
- [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.