College

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F)=\frac{5}{9}(F-32)[/tex].

What does [tex]C(F)[/tex] represent?

A. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Celsius when the input [tex]F[/tex] is in degrees Fahrenheit.

B. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Fahrenheit when the input [tex]C[/tex] is in degrees Celsius.

C. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Fahrenheit when the input [tex]F[/tex] is in degrees Celsius.

D. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Celsius when the input [tex]C[/tex] is in degrees Fahrenheit.

Answer :

To solve the question, we need to understand what the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] represents. This function is used to convert a temperature from degrees Fahrenheit to degrees Celsius.

Let's break down the components of the function:

1. Input [tex]\( F \)[/tex]: This is the temperature value in degrees Fahrenheit that you want to convert to degrees Celsius.

2. Output [tex]\( C(F) \)[/tex]: This is the value you obtain after applying the function to [tex]\( F \)[/tex]. The result will be the temperature in degrees Celsius.

The function works by taking the Fahrenheit temperature [tex]\( F \)[/tex], subtracting 32 to adjust for the freezing point of water difference between the two scales, then multiplying by [tex]\(\frac{5}{9}\)[/tex] to account for the scale factor difference in size between the degrees on each scale.

Therefore, when the problem asks what [tex]\( C(F) \)[/tex] represents:

- Correct Choice: [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.

This matches the basic understanding of converting temperatures using the given formula, ensuring that the conversion from degrees Fahrenheit to degrees Celsius is correctly interpreted.