High School

Solve [tex]4|x+5|+8=24[/tex]

A. [tex]x=-1[/tex] and [tex]x=9[/tex]
B. [tex]x=1[/tex] and [tex]x=-1[/tex]
C. [tex]x=1[/tex] and [tex]x=-9[/tex]
D. [tex]x=-1[/tex] and [tex]x=-9[/tex]

Answer :

To solve the equation [tex]\(4|x + 5| + 8 = 24\)[/tex], follow these steps:

1. Isolate the absolute value expression:

Start by subtracting 8 from both sides of the equation:
[tex]\[
4|x + 5| + 8 - 8 = 24 - 8
\][/tex]
[tex]\[
4|x + 5| = 16
\][/tex]

2. Divide both sides by 4:

[tex]\[
\frac{4|x + 5|}{4} = \frac{16}{4}
\][/tex]
[tex]\[
|x + 5| = 4
\][/tex]

3. Solve the absolute value equation:

The equation [tex]\( |x + 5| = 4 \)[/tex] can be split into two separate equations:

- Case 1: [tex]\( x + 5 = 4 \)[/tex]
- Subtract 5 from both sides:
[tex]\[
x = 4 - 5
\][/tex]
[tex]\[
x = -1
\][/tex]

- Case 2: [tex]\( x + 5 = -4 \)[/tex]
- Subtract 5 from both sides:
[tex]\[
x = -4 - 5
\][/tex]
[tex]\[
x = -9
\][/tex]

4. Write the solutions:

The solutions to the equation are [tex]\( x = -1 \)[/tex] and [tex]\( x = -9 \)[/tex].

Thus, the correct answer is:
- [tex]\( x = -1 \)[/tex] and [tex]\( x = -9 \)[/tex]

So, the correct option is D. [tex]\( x = -1 \)[/tex] and [tex]\( x = -9 \)[/tex].