College

On his first day of school, Kareem found the high temperature in degrees Fahrenheit to be 76.1 degrees. He plans to use the function [tex]$C(F)=\frac{5}{9}(F-32)$[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius.

What does [tex]$C(76.1)$[/tex] represent?

A. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit.
B. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius.
C. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit.

Answer :

Alright, let's work through the problem step by step.

Kareem wants to convert a temperature of 76.1 degrees Fahrenheit to degrees Celsius using the given function:
[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]

1. Understand the function: The function [tex]\(C(F)\)[/tex] converts a temperature in Fahrenheit, [tex]\(F\)[/tex], to Celsius, [tex]\(C\)[/tex].

2. Substitute the given value: We need to find [tex]\(C(76.1)\)[/tex]. So, substitute [tex]\(F = 76.1\)[/tex] into the function:
[tex]\[ C(76.1) = \frac{5}{9}(76.1 - 32) \][/tex]

3. Calculate the inside of the parentheses:
[tex]\[ 76.1 - 32 = 44.1 \][/tex]

4. Multiply by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[ C(76.1) = \frac{5}{9} \times 44.1 \][/tex]

5. Perform the multiplication:
[tex]\[ \frac{5}{9} \times 44.1 \approx 24.5 \][/tex]

Therefore, [tex]\( C(76.1) \)[/tex] represents approximately 24.5 degrees Celsius.

Conclusion:
[tex]\[ C(76.1) \][/tex] represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.