Answer :
Alright, let's work through the problem step by step.
Kareem wants to convert a temperature of 76.1 degrees Fahrenheit to degrees Celsius using the given function:
[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]
1. Understand the function: The function [tex]\(C(F)\)[/tex] converts a temperature in Fahrenheit, [tex]\(F\)[/tex], to Celsius, [tex]\(C\)[/tex].
2. Substitute the given value: We need to find [tex]\(C(76.1)\)[/tex]. So, substitute [tex]\(F = 76.1\)[/tex] into the function:
[tex]\[ C(76.1) = \frac{5}{9}(76.1 - 32) \][/tex]
3. Calculate the inside of the parentheses:
[tex]\[ 76.1 - 32 = 44.1 \][/tex]
4. Multiply by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[ C(76.1) = \frac{5}{9} \times 44.1 \][/tex]
5. Perform the multiplication:
[tex]\[ \frac{5}{9} \times 44.1 \approx 24.5 \][/tex]
Therefore, [tex]\( C(76.1) \)[/tex] represents approximately 24.5 degrees Celsius.
Conclusion:
[tex]\[ C(76.1) \][/tex] represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
Kareem wants to convert a temperature of 76.1 degrees Fahrenheit to degrees Celsius using the given function:
[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]
1. Understand the function: The function [tex]\(C(F)\)[/tex] converts a temperature in Fahrenheit, [tex]\(F\)[/tex], to Celsius, [tex]\(C\)[/tex].
2. Substitute the given value: We need to find [tex]\(C(76.1)\)[/tex]. So, substitute [tex]\(F = 76.1\)[/tex] into the function:
[tex]\[ C(76.1) = \frac{5}{9}(76.1 - 32) \][/tex]
3. Calculate the inside of the parentheses:
[tex]\[ 76.1 - 32 = 44.1 \][/tex]
4. Multiply by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[ C(76.1) = \frac{5}{9} \times 44.1 \][/tex]
5. Perform the multiplication:
[tex]\[ \frac{5}{9} \times 44.1 \approx 24.5 \][/tex]
Therefore, [tex]\( C(76.1) \)[/tex] represents approximately 24.5 degrees Celsius.
Conclusion:
[tex]\[ C(76.1) \][/tex] represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.