Answer :
We are given the conversion function
[tex]$$
C(F) = \frac{5}{9}(F - 32)
$$[/tex]
which converts a temperature in degrees Fahrenheit to degrees Celsius. Here, the variable [tex]$F$[/tex] represents the temperature in Fahrenheit.
Step 1: Substitute the given Fahrenheit temperature
The problem provides a temperature of [tex]$76.1^\circ$[/tex] F. Substitute this value into the function:
[tex]$$
C(76.1) = \frac{5}{9}(76.1 - 32)
$$[/tex]
Step 2: Compute the difference from 32 (the freezing point in Fahrenheit)
Subtract [tex]$32$[/tex] from [tex]$76.1$[/tex]:
[tex]$$
76.1 - 32 \approx 44.1
$$[/tex]
Step 3: Multiply by the conversion factor
Multiply the result by [tex]$\frac{5}{9}$[/tex]:
[tex]$$
C(76.1) \approx \frac{5}{9} \times 44.1 \approx 24.5
$$[/tex]
This value, approximately [tex]$24.5$[/tex], represents the temperature in degrees Celsius.
Conclusion
Thus, [tex]$C(76.1)$[/tex] represents the temperature of [tex]$76.1^\circ$[/tex] Fahrenheit converted to degrees Celsius.
[tex]$$
C(F) = \frac{5}{9}(F - 32)
$$[/tex]
which converts a temperature in degrees Fahrenheit to degrees Celsius. Here, the variable [tex]$F$[/tex] represents the temperature in Fahrenheit.
Step 1: Substitute the given Fahrenheit temperature
The problem provides a temperature of [tex]$76.1^\circ$[/tex] F. Substitute this value into the function:
[tex]$$
C(76.1) = \frac{5}{9}(76.1 - 32)
$$[/tex]
Step 2: Compute the difference from 32 (the freezing point in Fahrenheit)
Subtract [tex]$32$[/tex] from [tex]$76.1$[/tex]:
[tex]$$
76.1 - 32 \approx 44.1
$$[/tex]
Step 3: Multiply by the conversion factor
Multiply the result by [tex]$\frac{5}{9}$[/tex]:
[tex]$$
C(76.1) \approx \frac{5}{9} \times 44.1 \approx 24.5
$$[/tex]
This value, approximately [tex]$24.5$[/tex], represents the temperature in degrees Celsius.
Conclusion
Thus, [tex]$C(76.1)$[/tex] represents the temperature of [tex]$76.1^\circ$[/tex] Fahrenheit converted to degrees Celsius.