High School

Simplify: [tex]\sqrt{\frac{12}{25}}[/tex]

A. [tex]\frac{4 \sqrt{7}}{25}[/tex]

B. [tex]\frac{2 \sqrt{3}}{5}[/tex]

C. [tex]\frac{2 \sqrt{7}}{5}[/tex]

D. [tex]\frac{4 \sqrt{3}}{5}[/tex]

Answer :

Sure! Let's simplify the expression [tex]\(\sqrt{\frac{12}{25}}\)[/tex] step-by-step.

1. Start with the expression:

[tex]\[
\sqrt{\frac{12}{25}}
\][/tex]

2. Simplify inside the square root:

The fraction [tex]\(\frac{12}{25}\)[/tex] can be expressed as [tex]\(\frac{4 \times 3}{5 \times 5}\)[/tex].

3. Separate the square root for the numerator and the denominator:

[tex]\[
\sqrt{\frac{12}{25}} = \frac{\sqrt{12}}{\sqrt{25}}
\][/tex]

4. Simplify [tex]\(\sqrt{12}\)[/tex]:

[tex]\(\sqrt{12}\)[/tex] can be broken down as [tex]\(\sqrt{4 \times 3}\)[/tex], which equals [tex]\(\sqrt{4} \times \sqrt{3}\)[/tex].

5. Calculate the square roots:

- [tex]\(\sqrt{4} = 2\)[/tex]
- [tex]\(\sqrt{3}\)[/tex] remains as it is since it's an irrational number.

So, [tex]\(\sqrt{12} = 2 \times \sqrt{3} = 2\sqrt{3}\)[/tex].

6. Simplify [tex]\(\sqrt{25}\)[/tex]:

[tex]\(\sqrt{25} = 5\)[/tex].

7. Put it all together:

[tex]\[
\frac{\sqrt{12}}{\sqrt{25}} = \frac{2\sqrt{3}}{5}
\][/tex]

Therefore, the simplified form of [tex]\(\sqrt{\frac{12}{25}}\)[/tex] is [tex]\(\frac{2\sqrt{3}}{5}\)[/tex].