College

Solve [tex]4|x+5| = 16[/tex]

A. [tex]x = 1[/tex] and [tex]x = -1[/tex]
B. [tex]x = 1[/tex] and [tex]x = -9[/tex]
C. [tex]x = -1[/tex] and [tex]x = -9[/tex]
D. [tex]x = -1[/tex] and [tex]x = 9[/tex]

Answer :

To solve the equation [tex]\(4|x+5|=16\)[/tex]:

1. First, isolate the absolute value by dividing both sides of the equation by 4:
[tex]\[
|x+5| = \frac{16}{4} = 4
\][/tex]

2. The equation [tex]\( |x+5| = 4 \)[/tex] means that [tex]\(x + 5\)[/tex] can be either 4 or -4. We need to consider both cases separately:

Case 1:
[tex]\[
x + 5 = 4
\][/tex]
Solve for [tex]\(x\)[/tex]:
[tex]\[
x = 4 - 5
\][/tex]
[tex]\[
x = -1
\][/tex]

Case 2:
[tex]\[
x + 5 = -4
\][/tex]
Solve for [tex]\(x\)[/tex]:
[tex]\[
x = -4 - 5
\][/tex]
[tex]\[
x = -9
\][/tex]

3. Therefore, the solutions to the equation [tex]\(4|x+5|=16\)[/tex] are [tex]\( x = -1 \)[/tex] and [tex]\( x = -9 \)[/tex].

So, the correct answer is:
C. [tex]\(x = -1\)[/tex] and [tex]\(x = -9\)[/tex].