High School

Solve [tex]4|x+5|=24[/tex].

A. [tex]x=-11[/tex] and [tex]x=-1[/tex]
B. [tex]x=-11[/tex] and [tex]x=1[/tex]
C. [tex]x=11[/tex] and [tex]x=-11[/tex]
D. [tex]x=11[/tex] and [tex]x=-1[/tex]

Answer :

We start with the equation:
[tex]$$4|x+5| = 24.$$[/tex]

Step 1: Isolate the absolute value by dividing both sides by 4:
[tex]$$
|x+5| = \frac{24}{4} = 6.
$$[/tex]

Step 2: Solve the absolute value equation. The equation [tex]$$|x+5|=6$$[/tex] leads to two cases:

1. When the expression inside the absolute value is positive:
[tex]$$
x+5 = 6 \quad \Longrightarrow \quad x = 6 - 5 = 1.
$$[/tex]

2. When the expression inside the absolute value is negative:
[tex]$$
x+5 = -6 \quad \Longrightarrow \quad x = -6 - 5 = -11.
$$[/tex]

Thus, the solutions are [tex]$$x = 1 \quad \text{and} \quad x = -11.$$[/tex]

Comparing with the answer choices, the correct option is:

B. [tex]\(x = -11\)[/tex] and [tex]\(x = 1\)[/tex].