College

Solve [tex]$4|x+5|=24$[/tex].

A. [tex]$x=11$[/tex] and [tex][tex]$x=-11$[/tex][/tex]
B. [tex]$x=-11$[/tex] and [tex]$x=1$[/tex]
C. [tex][tex]$x=11$[/tex][/tex] and [tex]$x=-1$[/tex]
D. [tex]$x=-11$[/tex] and [tex][tex]$x=-1$[/tex][/tex]

Answer :

To solve the equation

[tex]$$
4|x+5| = 24,
$$[/tex]

follow these steps:

1. Isolate the absolute value expression:
Divide both sides of the equation by 4:

[tex]$$
|x+5| = \frac{24}{4} = 6.
$$[/tex]

2. Set up the cases for the absolute value:
Since the absolute value of an expression equals 6, the expression inside can be either 6 or -6. This gives us two equations:

Case 1:
[tex]$$
x+5 = 6.
$$[/tex]
Subtract 5 from both sides:
[tex]$$
x = 6 - 5 = 1.
$$[/tex]

Case 2:
[tex]$$
x+5 = -6.
$$[/tex]
Again, subtract 5 from both sides:
[tex]$$
x = -6 - 5 = -11.
$$[/tex]

3. State the solutions:
The two solutions to the equation are:

[tex]$$
x = 1 \quad \text{and} \quad x = -11.
$$[/tex]

Among the provided options, the correct answer is:

- Option B: [tex]$x=-11$[/tex] and [tex]$x=1$[/tex].