College

Solve [tex]4|x+5|+8=24[/tex].

A. [tex]x=-1[/tex] and [tex]x=-9[/tex]
B. [tex]x=-1[/tex] and [tex]x=9[/tex]
C. [tex]x=1[/tex] and [tex]x=-1[/tex]
D. [tex]x=1[/tex] and [tex]x=-9[/tex]

Answer :

Let's solve the equation [tex]\(4|x+5| + 8 = 24\)[/tex] step by step.

1. Simplify the equation:

We start by isolating the absolute value term:
[tex]\[
4|x+5| + 8 = 24
\][/tex]

Subtract 8 from both sides:
[tex]\[
4|x+5| = 16
\][/tex]

2. Divide by 4:

Divide both sides by 4 to solve for the absolute value:
[tex]\[
|x+5| = 4
\][/tex]

3. Remove the absolute value:

The absolute value equation [tex]\(|x+5| = 4\)[/tex] gives us two possible equations:
[tex]\[
x+5 = 4 \quad \text{or} \quad x+5 = -4
\][/tex]

4. Solve each equation:

- For [tex]\(x+5 = 4\)[/tex]:
[tex]\[
x = 4 - 5 = -1
\][/tex]

- For [tex]\(x+5 = -4\)[/tex]:
[tex]\[
x = -4 - 5 = -9
\][/tex]

5. Solution:

The solutions to the equation [tex]\(4|x+5| + 8 = 24\)[/tex] are [tex]\(x = -1\)[/tex] and [tex]\(x = -9\)[/tex]. Therefore, the correct answer is:

A. [tex]\(x = -1\)[/tex] and [tex]\(x = -9\)[/tex]