High School

Solve [tex]4|x+6|=16[/tex].

A. [tex]x=2[/tex] and [tex]x=-2[/tex]
B. [tex]x=-2[/tex] and [tex]x=-10[/tex]
C. [tex]x=2[/tex] and [tex]x=-10[/tex]
D. [tex]x=-2[/tex] and [tex]x=10[/tex]

Answer :

Let's solve the equation [tex]\(4|x+6| = 16\)[/tex].

1. First, divide both sides of the equation by 4 to simplify it:
[tex]\[
|x+6| = 4
\][/tex]

2. The absolute value equation [tex]\( |x+6| = 4 \)[/tex] means that the expression inside the absolute value can be either 4 or -4. This gives us two separate equations to solve:

a) [tex]\( x+6 = 4 \)[/tex]

b) [tex]\( x+6 = -4 \)[/tex]

3. Solve each equation separately:

a) For [tex]\( x+6 = 4 \)[/tex]:
[tex]\[
x = 4 - 6
\][/tex]
[tex]\[
x = -2
\][/tex]

b) For [tex]\( x+6 = -4 \)[/tex]:
[tex]\[
x = -4 - 6
\][/tex]
[tex]\[
x = -10
\][/tex]

4. Therefore, the solutions to the equation [tex]\(4|x+6| = 16\)[/tex] are [tex]\( x = -2 \)[/tex] and [tex]\( x = -10 \)[/tex].

So, the correct answer is B. [tex]\(x = -2\)[/tex] and [tex]\(x = -10\)[/tex].