Answer :
Let's solve the equation [tex]\(4|x+6| + 8 = 28\)[/tex] step-by-step.
1. Isolate the Absolute Value Expression:
Start by subtracting 8 from both sides of the equation:
[tex]\[
4|x+6| + 8 - 8 = 28 - 8
\][/tex]
Simplifying this, we get:
[tex]\[
4|x+6| = 20
\][/tex]
2. Divide to Simplify:
Divide both sides by 4 to solve for the absolute value:
[tex]\[
|x+6| = \frac{20}{4}
\][/tex]
This gives:
[tex]\[
|x+6| = 5
\][/tex]
3. Set Up Two Scenarios:
Since [tex]\(|x+6| = 5\)[/tex], there are two possible scenarios:
- [tex]\(x + 6 = 5\)[/tex]
- [tex]\(x + 6 = -5\)[/tex]
4. Solve Each Scenario:
Scenario 1:
Solve [tex]\(x + 6 = 5\)[/tex]:
[tex]\[
x = 5 - 6
\][/tex]
[tex]\[
x = -1
\][/tex]
Scenario 2:
Solve [tex]\(x + 6 = -5\)[/tex]:
[tex]\[
x = -5 - 6
\][/tex]
[tex]\[
x = -11
\][/tex]
5. Conclusion:
The solutions to the equation [tex]\(4|x+6| + 8 = 28\)[/tex] are [tex]\(x = -1\)[/tex] and [tex]\(x = -11\)[/tex].
Therefore, the correct answer is:
D. [tex]\(x = -1\)[/tex] and [tex]\(x = -11\)[/tex]
1. Isolate the Absolute Value Expression:
Start by subtracting 8 from both sides of the equation:
[tex]\[
4|x+6| + 8 - 8 = 28 - 8
\][/tex]
Simplifying this, we get:
[tex]\[
4|x+6| = 20
\][/tex]
2. Divide to Simplify:
Divide both sides by 4 to solve for the absolute value:
[tex]\[
|x+6| = \frac{20}{4}
\][/tex]
This gives:
[tex]\[
|x+6| = 5
\][/tex]
3. Set Up Two Scenarios:
Since [tex]\(|x+6| = 5\)[/tex], there are two possible scenarios:
- [tex]\(x + 6 = 5\)[/tex]
- [tex]\(x + 6 = -5\)[/tex]
4. Solve Each Scenario:
Scenario 1:
Solve [tex]\(x + 6 = 5\)[/tex]:
[tex]\[
x = 5 - 6
\][/tex]
[tex]\[
x = -1
\][/tex]
Scenario 2:
Solve [tex]\(x + 6 = -5\)[/tex]:
[tex]\[
x = -5 - 6
\][/tex]
[tex]\[
x = -11
\][/tex]
5. Conclusion:
The solutions to the equation [tex]\(4|x+6| + 8 = 28\)[/tex] are [tex]\(x = -1\)[/tex] and [tex]\(x = -11\)[/tex].
Therefore, the correct answer is:
D. [tex]\(x = -1\)[/tex] and [tex]\(x = -11\)[/tex]