Answer :
Sure! Let's solve the equation [tex]\(|x + 5| - 6 = 7\)[/tex] step by step.
1. Isolate the absolute value term:
To isolate [tex]\(|x + 5|\)[/tex], add 6 to both sides of the equation:
[tex]\[
|x + 5| - 6 + 6 = 7 + 6
\][/tex]
This simplifies to:
[tex]\[
|x + 5| = 13
\][/tex]
2. Set up the two possible equations:
The absolute value equation [tex]\(|x + 5| = 13\)[/tex] means that [tex]\(x + 5\)[/tex] could be 13 or [tex]\(-13\)[/tex]. So, we set up two separate equations:
a) [tex]\(x + 5 = 13\)[/tex]
b) [tex]\(x + 5 = -13\)[/tex]
3. Solve each equation:
a) Solve [tex]\(x + 5 = 13\)[/tex]:
[tex]\[
x + 5 = 13
\][/tex]
Subtract 5 from both sides:
[tex]\[
x = 13 - 5
\][/tex]
[tex]\[
x = 8
\][/tex]
b) Solve [tex]\(x + 5 = -13\)[/tex]:
[tex]\[
x + 5 = -13
\][/tex]
Subtract 5 from both sides:
[tex]\[
x = -13 - 5
\][/tex]
[tex]\[
x = -18
\][/tex]
4. Write the solution:
The solutions to the equation [tex]\(|x + 5| - 6 = 7\)[/tex] are [tex]\(x = 8\)[/tex] and [tex]\(x = -18\)[/tex].
So, the correct answer is:
A. [tex]\(x = 8\)[/tex] and [tex]\(x = -18\)[/tex]
1. Isolate the absolute value term:
To isolate [tex]\(|x + 5|\)[/tex], add 6 to both sides of the equation:
[tex]\[
|x + 5| - 6 + 6 = 7 + 6
\][/tex]
This simplifies to:
[tex]\[
|x + 5| = 13
\][/tex]
2. Set up the two possible equations:
The absolute value equation [tex]\(|x + 5| = 13\)[/tex] means that [tex]\(x + 5\)[/tex] could be 13 or [tex]\(-13\)[/tex]. So, we set up two separate equations:
a) [tex]\(x + 5 = 13\)[/tex]
b) [tex]\(x + 5 = -13\)[/tex]
3. Solve each equation:
a) Solve [tex]\(x + 5 = 13\)[/tex]:
[tex]\[
x + 5 = 13
\][/tex]
Subtract 5 from both sides:
[tex]\[
x = 13 - 5
\][/tex]
[tex]\[
x = 8
\][/tex]
b) Solve [tex]\(x + 5 = -13\)[/tex]:
[tex]\[
x + 5 = -13
\][/tex]
Subtract 5 from both sides:
[tex]\[
x = -13 - 5
\][/tex]
[tex]\[
x = -18
\][/tex]
4. Write the solution:
The solutions to the equation [tex]\(|x + 5| - 6 = 7\)[/tex] are [tex]\(x = 8\)[/tex] and [tex]\(x = -18\)[/tex].
So, the correct answer is:
A. [tex]\(x = 8\)[/tex] and [tex]\(x = -18\)[/tex]