Answer :
To solve the equation [tex]\(-4|x-1| + 3 = -1\)[/tex], let's follow these steps:
1. Isolate the Absolute Value:
Start by moving the constant on the left side to the right side of the equation:
[tex]\[
-4|x-1| + 3 = -1
\][/tex]
Subtract 3 from both sides:
[tex]\[
-4|x-1| = -1 - 3
\][/tex]
[tex]\[
-4|x-1| = -4
\][/tex]
2. Divide by [tex]\(-4\)[/tex] to Simplify:
Divide both sides of the equation by [tex]\(-4\)[/tex] to solve for the absolute value:
[tex]\[
|x-1| = \frac{-4}{-4}
\][/tex]
[tex]\[
|x-1| = 1
\][/tex]
3. Set Up the Two Cases for the Absolute Value:
The absolute value equation [tex]\(|x-1| = 1\)[/tex] gives us two possible scenarios:
- Case 1: [tex]\(x - 1 = 1\)[/tex]
- Case 2: [tex]\(x - 1 = -1\)[/tex]
4. Solve Each Case:
- Case 1:
[tex]\[
x - 1 = 1
\][/tex]
Add 1 to both sides:
[tex]\[
x = 1 + 1 = 2
\][/tex]
- Case 2:
[tex]\[
x - 1 = -1
\][/tex]
Add 1 to both sides:
[tex]\[
x = -1 + 1 = 0
\][/tex]
5. Solutions:
The solutions to the equation are [tex]\(x = 2\)[/tex] and [tex]\(x = 0\)[/tex].
Thus, the correct answer is:
- [tex]\(x = 2\)[/tex] and [tex]\(x = 0\)[/tex], which corresponds to option E.
1. Isolate the Absolute Value:
Start by moving the constant on the left side to the right side of the equation:
[tex]\[
-4|x-1| + 3 = -1
\][/tex]
Subtract 3 from both sides:
[tex]\[
-4|x-1| = -1 - 3
\][/tex]
[tex]\[
-4|x-1| = -4
\][/tex]
2. Divide by [tex]\(-4\)[/tex] to Simplify:
Divide both sides of the equation by [tex]\(-4\)[/tex] to solve for the absolute value:
[tex]\[
|x-1| = \frac{-4}{-4}
\][/tex]
[tex]\[
|x-1| = 1
\][/tex]
3. Set Up the Two Cases for the Absolute Value:
The absolute value equation [tex]\(|x-1| = 1\)[/tex] gives us two possible scenarios:
- Case 1: [tex]\(x - 1 = 1\)[/tex]
- Case 2: [tex]\(x - 1 = -1\)[/tex]
4. Solve Each Case:
- Case 1:
[tex]\[
x - 1 = 1
\][/tex]
Add 1 to both sides:
[tex]\[
x = 1 + 1 = 2
\][/tex]
- Case 2:
[tex]\[
x - 1 = -1
\][/tex]
Add 1 to both sides:
[tex]\[
x = -1 + 1 = 0
\][/tex]
5. Solutions:
The solutions to the equation are [tex]\(x = 2\)[/tex] and [tex]\(x = 0\)[/tex].
Thus, the correct answer is:
- [tex]\(x = 2\)[/tex] and [tex]\(x = 0\)[/tex], which corresponds to option E.