High School

Which choice is equivalent to the expression below?

[tex]\sqrt{32}-\sqrt{2}[/tex]

A. [tex]\sqrt{30}[/tex]
B. [tex]3 \sqrt{2}[/tex]
C. 4
D. [tex]16 \sqrt{2}[/tex]

Answer :

To solve the expression [tex]\(\sqrt{32} - \sqrt{2}\)[/tex], we'll simplify each part of the expression and then find the equivalent choice.

1. Simplify [tex]\(\sqrt{32}\)[/tex]:

[tex]\(\sqrt{32}\)[/tex] can be rewritten as [tex]\(\sqrt{16 \times 2}\)[/tex].

Using the property of square roots, [tex]\(\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\)[/tex], we get:

[tex]\(\sqrt{32} = \sqrt{16} \times \sqrt{2} = 4 \times \sqrt{2}\)[/tex].

2. Rewrite the expression:

Now substitute back into the original expression:

[tex]\(4\sqrt{2} - \sqrt{2}\)[/tex].

3. Combine like terms:

Since both terms contain [tex]\(\sqrt{2}\)[/tex], we can factor [tex]\(\sqrt{2}\)[/tex] out:

[tex]\(4\sqrt{2} - \sqrt{2} = (4 - 1) \times \sqrt{2} = 3\sqrt{2}\)[/tex].

4. Determine the equivalent choice:

The simplified expression is [tex]\(3\sqrt{2}\)[/tex].

Therefore, the choice equivalent to the expression [tex]\(\sqrt{32} - \sqrt{2}\)[/tex] is:

B. [tex]\(3\sqrt{2}\)[/tex].