Answer :
To understand the function [tex]\( C(F) = \frac{5}{9}(F-32) \)[/tex], we need to interpret what each part of it represents. This function is used to convert temperatures from degrees Fahrenheit to degrees Celsius.
Let's break it down:
1. Function Notation [tex]\( C(F) \)[/tex]:
- [tex]\( C \)[/tex] is the function's name, which indicates it's related to Celsius.
- [tex]\( F \)[/tex] inside the parentheses is the input to the function, representing a temperature in degrees Fahrenheit.
2. Function Output [tex]\( C(F) \)[/tex]:
- The result of [tex]\( C(F) \)[/tex] gives us a value in degrees Celsius, which is the converted temperature from the Fahrenheit input.
Based on this explanation, let's find the correct interpretation for [tex]\( C(F) \)[/tex]:
- [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.
Thus, the correct choice is:
1. [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.
This is the accurate interpretation according to how the function [tex]\( C(F) = \frac{5}{9}(F-32) \)[/tex] is defined and used.
Let's break it down:
1. Function Notation [tex]\( C(F) \)[/tex]:
- [tex]\( C \)[/tex] is the function's name, which indicates it's related to Celsius.
- [tex]\( F \)[/tex] inside the parentheses is the input to the function, representing a temperature in degrees Fahrenheit.
2. Function Output [tex]\( C(F) \)[/tex]:
- The result of [tex]\( C(F) \)[/tex] gives us a value in degrees Celsius, which is the converted temperature from the Fahrenheit input.
Based on this explanation, let's find the correct interpretation for [tex]\( C(F) \)[/tex]:
- [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.
Thus, the correct choice is:
1. [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.
This is the accurate interpretation according to how the function [tex]\( C(F) = \frac{5}{9}(F-32) \)[/tex] is defined and used.