Answer :
The conversion function is given by
[tex]$$
C(F)=\frac{5}{9}(F-32).
$$[/tex]
Here’s a step-by-step explanation:
1. The variable [tex]$F$[/tex] represents a temperature in degrees Fahrenheit.
2. The function subtracts 32 from [tex]$F$[/tex], which adjusts the scale by accounting for the freezing point of water in Fahrenheit.
3. The product [tex]$\frac{5}{9}$[/tex] scales the difference so that it is in degrees Celsius.
4. Therefore, when you input a temperature in Fahrenheit into this function, the output [tex]$C(F)$[/tex] is the equivalent temperature in degrees Celsius.
Thus, [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.
[tex]$$
C(F)=\frac{5}{9}(F-32).
$$[/tex]
Here’s a step-by-step explanation:
1. The variable [tex]$F$[/tex] represents a temperature in degrees Fahrenheit.
2. The function subtracts 32 from [tex]$F$[/tex], which adjusts the scale by accounting for the freezing point of water in Fahrenheit.
3. The product [tex]$\frac{5}{9}$[/tex] scales the difference so that it is in degrees Celsius.
4. Therefore, when you input a temperature in Fahrenheit into this function, the output [tex]$C(F)$[/tex] is the equivalent temperature in degrees Celsius.
Thus, [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.