Answer :
Sure, let's solve the equation [tex]\( |x + 5| - 6 = 7 \)[/tex] step-by-step.
We need to solve for [tex]\( x \)[/tex].
### Step 1: Isolate the Absolute Value
First, add 6 to both sides of the equation to isolate the absolute value expression:
[tex]\[
|x + 5| - 6 + 6 = 7 + 6
\][/tex]
[tex]\[
|x + 5| = 13
\][/tex]
### Step 2: Set Up Two Equations
The absolute value equation [tex]\( |x + 5| = 13 \)[/tex] means that [tex]\( x + 5 \)[/tex] could be 13 or [tex]\(-13\)[/tex]. So we set up two separate equations:
1. [tex]\( x + 5 = 13 \)[/tex]
2. [tex]\( x + 5 = -13 \)[/tex]
### Step 3: Solve Each Equation
#### Equation 1: [tex]\( x + 5 = 13 \)[/tex]
Subtract 5 from both sides:
[tex]\[
x = 13 - 5
\][/tex]
[tex]\[
x = 8
\][/tex]
#### Equation 2: [tex]\( x + 5 = -13 \)[/tex]
Subtract 5 from both sides:
[tex]\[
x = -13 - 5
\][/tex]
[tex]\[
x = -18
\][/tex]
### Step 4: Write Down the Solutions
The solutions to the equation [tex]\( |x + 5| - 6 = 7 \)[/tex] are:
[tex]\[
x = 8 \quad \text{and} \quad x = -18
\][/tex]
### Step 5: Match the Solutions to the Given Choices
Looking at the given options:
- A. [tex]\( x = -8 \)[/tex] and [tex]\( x = 18 \)[/tex]
- B. [tex]\( x = 8 \)[/tex] and [tex]\( x = -8 \)[/tex]
- C. [tex]\( x = -8 \)[/tex] and [tex]\( x = -18 \)[/tex]
- D. [tex]\( x = 8 \)[/tex] and [tex]\( x = -18 \)[/tex]
The correct answer is:
[tex]\[
\boxed{D}
\][/tex]
We need to solve for [tex]\( x \)[/tex].
### Step 1: Isolate the Absolute Value
First, add 6 to both sides of the equation to isolate the absolute value expression:
[tex]\[
|x + 5| - 6 + 6 = 7 + 6
\][/tex]
[tex]\[
|x + 5| = 13
\][/tex]
### Step 2: Set Up Two Equations
The absolute value equation [tex]\( |x + 5| = 13 \)[/tex] means that [tex]\( x + 5 \)[/tex] could be 13 or [tex]\(-13\)[/tex]. So we set up two separate equations:
1. [tex]\( x + 5 = 13 \)[/tex]
2. [tex]\( x + 5 = -13 \)[/tex]
### Step 3: Solve Each Equation
#### Equation 1: [tex]\( x + 5 = 13 \)[/tex]
Subtract 5 from both sides:
[tex]\[
x = 13 - 5
\][/tex]
[tex]\[
x = 8
\][/tex]
#### Equation 2: [tex]\( x + 5 = -13 \)[/tex]
Subtract 5 from both sides:
[tex]\[
x = -13 - 5
\][/tex]
[tex]\[
x = -18
\][/tex]
### Step 4: Write Down the Solutions
The solutions to the equation [tex]\( |x + 5| - 6 = 7 \)[/tex] are:
[tex]\[
x = 8 \quad \text{and} \quad x = -18
\][/tex]
### Step 5: Match the Solutions to the Given Choices
Looking at the given options:
- A. [tex]\( x = -8 \)[/tex] and [tex]\( x = 18 \)[/tex]
- B. [tex]\( x = 8 \)[/tex] and [tex]\( x = -8 \)[/tex]
- C. [tex]\( x = -8 \)[/tex] and [tex]\( x = -18 \)[/tex]
- D. [tex]\( x = 8 \)[/tex] and [tex]\( x = -18 \)[/tex]
The correct answer is:
[tex]\[
\boxed{D}
\][/tex]