High School

Solve [tex]|x+5|-6=7[/tex].

A. [tex]x=8[/tex] and [tex]x=-8[/tex]
B. [tex]x=-8[/tex] and [tex]x=18[/tex]
C. [tex]x=8[/tex] and [tex]x=-18[/tex]
D. [tex]x=-8[/tex] and [tex]x=-18[/tex]

Answer :

Let's solve the equation step-by-step:

The equation we have is:

[tex]\[ |x + 5| - 6 = 7 \][/tex]

First, we need to isolate the absolute value expression. We can do this by adding 6 to both sides of the equation:

[tex]\[ |x + 5| = 13 \][/tex]

The equation [tex]\(|x + 5| = 13\)[/tex] means that the expression inside the absolute value, [tex]\(x + 5\)[/tex], can be either 13 or -13. So, we set up two separate equations to solve for [tex]\(x\)[/tex]:

1. [tex]\(x + 5 = 13\)[/tex]
2. [tex]\(x + 5 = -13\)[/tex]

Now, solve each equation:

1. For [tex]\(x + 5 = 13\)[/tex]:

[tex]\[ x + 5 = 13 \][/tex]

Subtract 5 from both sides:

[tex]\[ x = 13 - 5 \][/tex]

[tex]\[ x = 8 \][/tex]

2. For [tex]\(x + 5 = -13\)[/tex]:

[tex]\[ x + 5 = -13 \][/tex]

Subtract 5 from both sides:

[tex]\[ x = -13 - 5 \][/tex]

[tex]\[ x = -18 \][/tex]

So, the solutions to the equation are [tex]\(x = 8\)[/tex] and [tex]\(x = -18\)[/tex].

Therefore, the correct answer choice is:

C. [tex]\(x = 8\)[/tex] and [tex]\(x = -18\)[/tex]