High School

Which choice is equivalent to the expression below?

[tex]\sqrt{50} - \sqrt{2}[/tex]

A. [tex]\sqrt{48}[/tex]

B. [tex]24 \sqrt{2}[/tex]

C. 5

D. [tex]4 \sqrt{2}[/tex]

Answer :

To find an equivalent expression to [tex]\(\sqrt{50} - \sqrt{2}\)[/tex], we can simplify the square root of 50.

1. Simplify [tex]\(\sqrt{50}\)[/tex]:

The number 50 can be factored into its prime factors:
[tex]\(50 = 2 \times 5 \times 5 = 2 \times 25\)[/tex].

Now, apply the property of square roots:
[tex]\[
\sqrt{50} = \sqrt{2 \times 25} = \sqrt{2} \times \sqrt{25}
\][/tex]

Since [tex]\(\sqrt{25} = 5\)[/tex], we have:
[tex]\[
\sqrt{50} = 5\sqrt{2}
\][/tex]

2. Substitute back into the expression:

Replace [tex]\(\sqrt{50}\)[/tex] with [tex]\(5\sqrt{2}\)[/tex] in the original expression [tex]\(\sqrt{50} - \sqrt{2}\)[/tex]:
[tex]\[
5\sqrt{2} - \sqrt{2}
\][/tex]

3. Combine like terms:

Since these are like terms, you can subtract them:
[tex]\[
5\sqrt{2} - 1\sqrt{2} = (5 - 1)\sqrt{2} = 4\sqrt{2}
\][/tex]

This simplified expression is equivalent to the original expression. Therefore, the correct choice is:

D. [tex]\(4 \sqrt{2}\)[/tex]